MATC63 2022 Assignment 1 - Solutions
(1) Let α be a circle of radius r, say

$$
\alpha(t)=(r \cos (t), r \sin (t), 0)
$$

(a) Find an arc length parametrization of α.

Solution:

$$
\begin{gathered}
\alpha^{\prime}(t)=(-r \sin (t), r \cos (t), 0) \\
\left|\alpha^{\prime}(t)\right|=r \\
s(t)=\int_{0}^{t}\left|\alpha^{\prime}(u)\right| d u=r t \\
t=s / r
\end{gathered}
$$

So the arc length parametrization is

$$
A(s)=(r \cos (s / r), r \sin (s / r), 0)
$$

(b) Prove that the curvature of α is $1 / r$.

Using the arclength parametrization,

$$
\begin{gathered}
\left.T=A^{\prime}=(-r / r) \sin (s / r),(r / r) \cos (s / r), 0\right)=(-\sin (s / r), \cos (s / r), 0) \\
d T / d s=(-(1 / r) \cos (s / r),-(1 / r) \sin (s / r), 0) \\
T^{\prime}=\kappa N
\end{gathered}
$$

by Frenet 1 so

$$
\kappa=|d T / d s|=1 / r .
$$

(2) Find the Frenet apparatus of the curve

$$
\alpha(t)=\left(t, 2 \sqrt{t^{2}-1}, 1\right) .
$$

(This curve is part of the hyperbola

$$
\left\{(X, Y, Z): X^{2}-Y^{2}=c, Z=d\right\}
$$

where c and d are real constants.)
Compute only T, B and τ. You do not need to explicitly compute the expressions for N and κ. You will need some properties of N to compute B.

Note that this curve is not arclength parametrized, so you need to use the Frenet equations for non arclength parametrized curves.

Solution:

$$
\alpha^{\prime}=v T
$$

where $v(t)=d s / d t$. Here

$$
\alpha^{\prime}=\left(1, t\left(t^{2}-1\right)^{-1 / 2}, 0\right)
$$

So

$$
v^{2}=\left|\alpha^{\prime}\right|^{2}=\frac{2 t^{2}-1}{t^{2}-1}
$$

Note that

$$
\begin{gathered}
T=\alpha^{\prime} /\left|\alpha^{\prime}\right|=\left(\frac{t^{2}-1}{2 t^{2}-1}\right)^{1 / 2}\left(\left(1, \frac{t}{\sqrt{t^{2}-1}}, 0\right) .\right. \\
\alpha^{\prime \prime}=\left(0,\left(t^{2}-1\right)^{-1 / 2}-\frac{1}{2} t\left(t^{2}-1\right)^{-3 / 2}, 0\right)
\end{gathered}
$$

Note that α^{\prime} and $\alpha^{\prime \prime}$ have their third coordinate equal to 0 . Hence the third coordinate of N is also 0 .

$$
B=T \times N
$$

Since T and N both have their third coordinate equal to 0 , $B=T \times N=(0,0,1)($ or $(0,0,-1)) . B$ is constant (since it is a continuous function on a connected set) so $d B / d t=0$ so $\tau=0$.

This is consistent with the fact that this curve is a plane curve.

$$
\begin{gathered}
v \kappa=|d T / d t| \\
d B / d t=-v \tau N
\end{gathered}
$$

so

$$
v \tau=-<N, d B / d t>
$$

(3) Shifrin chap. $1.15(\mathrm{~b})$:

The catenary is

$$
\alpha(t)=(t, \cosh (t)) .
$$

Reparametrize it by arc length.
You may use the result of 5.5 (a) that the arclength of $\alpha(t)$ for $t \in[0, b]$ is $\sinh (b)$.

Solution:

$$
\begin{gathered}
s(b)=\sinh (b) \\
\cosh ^{2}(b)-\sinh ^{2}(b)=1
\end{gathered}
$$

So

$$
\left.\cosh (t)=\sqrt{1+\sinh ^{2}(b)}\right)=\sqrt{1+s^{2}}
$$

Also

$$
t=\cosh ^{-1}(\cosh (t))=\cosh ^{-1}\left(\sqrt{1+s^{2}}\right.
$$

(note that cosh is bijective)
Because $e^{t}-e^{-t}=2 s$, we have

$$
u^{2}-2 s u-1=0
$$

(letting $u=e^{t}$) so we can solve for u using the quadratic formula:

$$
u=s+\sqrt{s^{2}+1}
$$

(there is a second solution, which is disregarded because it is negative but u must be positive)

Hence we get

$$
t=\ln \left(s+\sqrt{s^{2}+1}\right)
$$

Hence our parametrization of $\alpha(t)=(t, \cosh t)$ is

$$
\left(\ln \left(s+\sqrt{s^{2}+1}\right), \sqrt{1+s^{2}}\right)
$$

(4) Curvature of an arclength parametrized curve - do Carmo section 1.5 no. 1 (a), (b) p. 22

Given the parametrized curve (helix)

$$
\alpha(s)=(a \cos s / c, a \sin s / c, b s / c)
$$

where $c^{2}=a^{2}+b^{2}$,
(a) Show that α is parametrized by arc length

Proof: The arc length is

$$
\begin{gathered}
d \alpha / d s=(-a / c \sin (s / c), a / c \cos (s / c), b / c) \\
\left.|d \alpha / d s|^{2}=a^{2}+b^{2}\right) / c^{2}=1
\end{gathered}
$$

It follows that the curve is parametrized by arclength.
(5) Frenet apparatus for a curve which is not necessarily arclength parametrized - Shifrin Section 1.2 3(e)

Compute the Frenet apparatus for

$$
\alpha(t)=(\cosh (t), \sinh (t), t)
$$

Solution:
Define $c=\cosh (t), s=\sinh (t)$.
So $\alpha(t)=(c, s, t)$.

$$
\begin{gathered}
d \alpha / d t=(s, c, 1) \\
d^{2} \alpha / d t^{2}=(c, s, 0) \\
T=(1 / v) \frac{d \alpha}{d t}=v^{-1}(s, c, 1)
\end{gathered}
$$

(from now on all derivatives are w.r.t t, not s, and ι means $d / d t$)

$$
\begin{gathered}
d T / d t=-\left(1 / v^{2}\right) v^{\prime} \alpha^{\prime}+(1 / v) \alpha^{\prime \prime} \\
\frac{d T}{d t}=\frac{d T}{d s} \frac{d s}{d t}=v \frac{d T}{d s}
\end{gathered}
$$

Note that

$$
v^{2}=1+s^{2}+c^{2}
$$

so

$$
2 v v^{\prime}=2 s s^{\prime}+2 c c^{\prime}=2 s c+2 c s=4 s c
$$

By Frenet 1,

$$
\frac{d T}{d s}=\kappa N
$$

so

$$
\kappa=|d T / d s|=|1 / v d T / d t| .
$$

In other words,

$$
\begin{gathered}
\kappa=(1 /|v|)\left|T^{\prime}\right| \\
T=(1 / v) \alpha^{\prime} \\
T^{\prime}=\left(-v^{\prime} / v^{2}\right) \alpha^{\prime}+(1 / v) \alpha^{\prime \prime}
\end{gathered}
$$

Step 1:

$$
\begin{gathered}
v=d s / d t=|d \alpha / d t|=\sqrt{1+s^{2}+c^{2}} \\
v^{2} \kappa^{2}=\left(T^{\prime}\right)^{2}=\left(\frac{\left(v^{\prime}\right)^{2}}{v^{4}}\left|\alpha^{\prime}\right|^{2}+1 / v^{2}\left|\alpha^{\prime \prime}\right|^{2}-2 \frac{v^{\prime}}{v^{3}}\left(\alpha^{\prime}, \alpha^{\prime \prime}\right) .\right. \\
\alpha^{\prime}=(s, c, 1) \\
\alpha^{\prime \prime}=(c, s, 0) \\
\left|\alpha^{\prime \prime}\right|^{2}=c^{2}+s^{2} \\
\left|\alpha^{\prime}\right|^{2}=1+s^{2}+c^{2} \\
\left(\alpha^{\prime}, \alpha^{\prime \prime}\right)=2 s c \\
N=T^{\prime} /\left|T^{\prime}\right| \\
=T^{\prime} / v \kappa \\
B=T \times N
\end{gathered}
$$

(cross product)

$$
=\left(1 / v^{2}\right)\left(\alpha^{\prime} \times\left(\left(-v^{\prime} / v\right) \alpha^{\prime}+\alpha^{\prime \prime}\right)\right.
$$

$$
\begin{gathered}
=\left(1 / v^{2}\right)\left(\alpha^{\prime} \times \alpha^{\prime \prime}\right) \\
=\left(1 / v^{2}\right)(-s, c,-1) \\
d B / d t=v \tau N .
\end{gathered}
$$

$$
d B / d t=\left(-2 v^{\prime} / v^{3}\right)(-s, c,-1)+\left(1 / v^{2}\right)(-c, s, 0)
$$

To find τ we take the dot product of $d B / d t$ with N. This is $B^{\prime} \cdot N=\left(-2 v^{\prime} / v^{3}\right)(1 / v \kappa)(-s, c,-1) \cdot T^{\prime}+\left(-1 / v^{2}\right)(1 / v \kappa)(-c, s, 0) \cdot T^{\prime}$.

Now

$$
T^{\prime}=\left(-v^{\prime} / v^{2}\right) \alpha^{\prime}+(1 / v) \alpha^{\prime \prime}
$$

and

$$
\alpha^{\prime \prime}=(c, s, 0)
$$

while

$$
\alpha^{\prime}=(s, c, 1)
$$

So

$$
\begin{aligned}
& B^{\prime} \cdot N=\left(-2 v^{\prime} / v^{3}\right)(1 / v \kappa)\left(-v^{\prime} / v^{2}\right)(-s, c,-1) \cdot \alpha^{\prime}+\left(-2 v^{\prime} / v^{3}\right)(1 / v \kappa)(1 / v)(-s, c,-1) \cdot \alpha^{\prime \prime} \\
& +\left(-1 / v^{2}\right)(1 / v \kappa)\left(-v^{\prime} / v^{2}\right)(-c, s, 0) \cdot \alpha^{\prime}+\left(-1 / v^{2}\right)(1 / v \kappa)(1 / v)(-c, s, 0) \cdot \alpha^{\prime \prime}
\end{aligned}
$$

Now use that

$$
\begin{gathered}
(-s, c,-1) \cdot \alpha^{\prime}=0 \\
(-c, s, 0) \cdot \alpha^{\prime}=0 \\
(-s, c,-1) \cdot \alpha^{\prime \prime}=0 \\
(-c, s, 0) \cdot \alpha^{\prime \prime}=-1
\end{gathered}
$$

so we get

$$
-\tau=B^{\prime} \cdot N=\left(-1 / v^{2}\right)(1 / v \kappa)(1 / v)(-1)=\left(1 / v^{4} \kappa\right)
$$

where v and κ were computed above.
(6) (cf. Shifrin 1.2 no. 18)

Suppose α is a helix with axis in direction A. Let β be the curve obtained by projecting α onto a plane orthogonal to A.
(a) Prove that the principal normals of α and β are parallel at corresponding points.

Proof: WLOG take A to be the z axis so β is the curve obtained by projecting α on the (x, y) plane (in other words if $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ then $\beta=\left(\alpha_{1}, \alpha_{2}\right)$. The principal normal is $T^{\prime} /\left|T^{\prime}\right|$ where $T=\alpha^{\prime}$. Here

$$
\alpha=(a \cos (s / c), a \sin (s / c), b s / c)
$$

For $\alpha, \alpha^{\prime}=T$ is given in Shifrin $\S 1.2$, Example 1:

$$
N=(-\cos (s / c),-\sin (s / c), 0)
$$

$$
\begin{gathered}
\beta=(a \cos (s / c), a \sin (s / c)) \\
T(\beta)=\beta^{\prime} /\left|\beta^{\prime}\right|=1 / c(-\sin (s / c), \cos (s / c)) \\
T^{\prime}(\beta)=\frac{1}{c^{2}}(-\cos (s / c),-\sin (s / c))
\end{gathered}
$$

As claimed, $T^{\prime}(\beta)$ is parallel to $N(\alpha)$.
(b) Calculate the curvature of β in terms of the curvature of α.

Solution: For α as shown in Shifrin $\S 1.2$ Example 1, $\kappa=a / c^{2}$.
To find the curvature of β, we rewrite $T(\beta)$ as having unit length:

$$
T(\beta)=(-\sin (s / c), \cos (s / c))
$$

So the curvature is the length of T^{\prime}. But $T^{\prime}=\frac{1}{c}(-\cos (s / c),-\sin (s / c), 0)$ So the curvature of β is $1 / c$.
(7) Isoperimetric inequality: - do Carmo section 1-7 no. 1
(a) Can there be a rectangle of area 9 and perimeter 4 ?

Solution: $L^{2} \geq 4 \pi A$ (isoperimetric inequality) $16 \geq 4 \pi(9)$ $4 \geq 9 \pi$ This is not possible.
(b) What is the largest area that can be enclosed in a rectangle of perimeter $2 P$, where $P>0$ is a real number? What are the side lengths of this rectangle?

Solution: The side lengths of a rectangle are x and y with $2 x+$ $2 y=2 P$, so $y=P-x$. The area is $x(P-x)=P x-x^{2}=A(x)$. The maximum area is achieved when $d / d x(A(x))=P-2 x=0$ so $x=P / 2$ and $y=P / 2$. So the rectangle of maximal area is a square.
(8) (do Carmo section 1.5 question 13) Let α be a curve parametrized by arclength with $\kappa, \tau \neq 0$. Suppose α lies on the surface of a sphere centered at the origin.

Let $\rho=1 / \kappa$ and $f=1 / \tau$. Differentiate $|\alpha(s)|$ to order 3 w.r.t. s and use the fact that (T, N, B) is a basis for \mathbf{R}^{3} to show

$$
\alpha(s)=-\rho N+\rho^{\prime} f B .
$$

This is equivalent to (a)

$$
<\alpha, N>=-1 / \kappa
$$

and (b)

$$
<\alpha, B>=(1 / \kappa)^{\prime}(1 / \tau) .
$$

Solution:
Suppose $<\alpha, \alpha>=1$. We assume the curve is arclength parametrized.

Differentiating w.r.t. s we also get $\left\langle\alpha, \alpha^{\prime}>0=0\right.$. Since $\alpha^{\prime}=T$ this means $\alpha=u N+v B$ for some functions $u(s)$ and $v(s)$.

It follows that

$$
0=d / d s<\alpha, \alpha^{\prime}>=<\alpha, \alpha^{\prime \prime}>+<\alpha^{\prime}, \alpha^{\prime}>
$$

Since $\alpha^{\prime}=T$ it follows that

$$
<\alpha, \alpha^{\prime \prime}>=-1
$$

But $\alpha^{\prime}=T$ and $\alpha^{\prime \prime}=T^{\prime}=\kappa N$ (by Frenet 1) so

$$
<\alpha, \alpha^{\prime \prime}>=\kappa<\alpha, N>=-1
$$

as claimed.
Now it follows that

$$
<\alpha, \alpha^{\prime \prime \prime}>=0
$$

This means

$$
\begin{gathered}
<\alpha, d / d s(\kappa N)>=0 . \\
<\alpha, \kappa^{\prime} N+\kappa N^{\prime}>=0 \\
<\alpha, \kappa^{\prime} N+\kappa(-\kappa T+\tau B)>=0 \\
\text { Since }<\alpha, N>=-1 / \kappa, \\
\kappa^{\prime}(-1 / \kappa)+\kappa \tau<\alpha, B>=0 .
\end{gathered}
$$

The result for (b) follows.

